Earthquakes in high mountain regions can trigger large landslides that bury villages, flood rivers and block important international roads, resulting in catastrophic human and economic losses.

"Dr. Haritashya’s work is not just cutting-edge science; it is directly beneficial to thousands — perhaps millions — of people who live in this earthquake-prone region."

Under a new $1.17 million grant from NASA, Umesh Haritashya, associate professor of geology, and a pair of University of Arizona research colleagues hope to better understand the relationship between earthquakes and landslides, and their potential for recurrence and disruption. The research could help determine safer locations for communities and infrastructure in the national border areas of Bhutan, China, Nepal, India and Pakistan.

Currently, little is known about earthquake wave propagation and its relationship to large landslides. For example, a 7.9-magnitude earthquake in one part of the region resulted in 3,000 to 4,000 landslides. Another earthquake of the same magnitude in China several years ago resulted in 50,000 to 80,000 landslides. "The project is going to advance the science to a new level," Haritashya said.

Using satellite imagery, Haritashya will map historic landslides and determine the speed at which they moved. He also will create computer models of rivers blocked by the debris, which can form large, artificial lakes behind the landslide that are hemmed in by loose sediment.

"Once the water pressure increases, that artificial lake could bust out and flood downstream," Haritashya said. "I will be modeling the hydrology of such flood scenarios."

His colleagues' research will include modeling earthquakes and the region’s mountain ridges. They will simulate seismic events of various magnitudes to track the resulting energy waves through the mountains, as well as their potential impacts.

The April 2015 Nepal earthquake killed nearly 9,000 people and injured almost 22,000. The magnitude 7.8 earthquake caused an avalanche on Mount Everest, killing 21 people, and landslides in the Langtang valley, where 250 people were reported missing. Entire villages were buried, leaving hundreds of thousands of people homeless.

"Dr. Haritashya’s work is not just cutting-edge science; it is directly beneficial to thousands — perhaps millions — of people who live in this earthquake-prone region," said Dan Goldman, professor and chair of the Department of Geology.

The project also will benefit students in Haritashya's courses.

"These opportunities absolutely, 100 percent affect my teaching," Haritashya said. "I'm not just bringing textbook knowledge to the classroom; I am bringing in real-life experience and scientific data that support the textbook's teachings. It is definitely going to bring a lot of new science into the classroom."

This is the third time in five years NASA has awarded research funding to Haritashya. Last year, his team received a $630,000 grant to study how the heating of glacial lakes is accelerating the melting and retreat of glaciers in the Asian Himalayas. In 2012, they were awarded nearly $1 million to conduct analysis of glacial lakes in the Hindu Kush-Himalaya region. This new funding isn’t related to his previous NASA projects.