ESTIMATES FOR THE NORM OF THE DERIVATIVE OF LIE EXPONENTIAL MAP FOR CONNECTED LIE GROUPS

REZA BIDAR

Abstract

. Let G be a connected real Lie group with a left invariant Riemannian metric d, and \mathfrak{g} be its Lie Algebra as an inner product space, and $\exp : \mathfrak{g} \rightarrow G$ the Lie exponential map. For $g \in G$ let l_{g} denote the left multiplication by g. One important question that arise about the exponential map would be asking if there are conditions under which the exponential map is quasiisometry. Quasi-isometries are mappings between two metric spaces, or in the context of present topic, between two Riemannian manifolds that respect large-scale geometry of these spaces and ignore their small-scale details.

This is true if the universal covering of G is \mathbb{R}^{n}. The other conditions that might be worthy of investigation are when G is compact, semi-simple, solvable or nilpotent.

Answering the 'quasi-isometry' question raises the problem of bounding the image of the differential of the exponential map. More specifically, given a non-zero vector $x \in \mathfrak{g}$ and any vector $y \in \mathfrak{g}$, we would like to find upper and lower bounds for $\left|d \exp _{x}(y)\right|$. It is well known that the differential of the exponential map at x is given by

$$
d \exp _{x}=d l_{\exp (x)} \frac{1-e^{-\operatorname{ad}_{x}}}{\operatorname{ad}_{x}} .
$$

Since the metric d is left invariant, it follows that for any vector $y \in \mathfrak{g}$

$$
\begin{equation*}
\left|d \exp _{x}(y)\right|=\left|\frac{1-e^{-\mathrm{ad}_{x}}}{\operatorname{ad}_{x}}(y)\right| \tag{1}
\end{equation*}
$$

Thus the problem of finding upper and lower bounds for $\left|d \exp _{x}(y)\right|$ would be equivalent to finding estimates for the norm of the image of

$$
\frac{1-e^{-\mathrm{ad}_{x}}}{\operatorname{ad}_{x}}
$$

which can be regarded as a compact operator on \mathfrak{g} as a finite dimensional Hilbert space. Singular values of a linear operator defined on a finite dimensional Hilbert space are related to the maximum of minimums (and the minimum of the maximums) of the norm of the operator on some subspaces of \mathcal{H}. This is known as minimax principle for singular values.

In the previous presentation, I used this principle to bound the norm of the image of the exponential map only when ad_{x} is diagonalizable as stated in the following Theorem:

Theorem 1. Let $x \in \mathfrak{g}$ be non-zero. Let $\hat{x}=x /|x|, \lambda_{1}, \cdots, \lambda_{p} \in \mathbb{C}$ be non-zero eigenvalues of $\mathrm{ad}_{\hat{x}}$, and

$$
\begin{aligned}
& \tilde{\lambda}_{\min }(|x|)=\min \left\{1,\left|\frac{1-e^{-\lambda_{1}|x|}}{\lambda_{1}|x|}\right|, \cdots,\left|\frac{1-e^{-\lambda_{p}|x|}}{\lambda_{p}|x|}\right|\right\} \\
& \tilde{\lambda}_{\max }(|x|)=\max \left\{1,\left|\frac{1-e^{-\lambda_{1}|x|}}{\lambda_{1}|x|}\right|, \cdots,\left|\frac{1-e^{-\lambda_{p}|x|}}{\lambda_{p}|x|}\right|\right\}
\end{aligned}
$$

Then there exist positive constants C, D, only depending on \hat{x}, such that for any unit vector $y \in \mathfrak{g}$

$$
\begin{equation*}
C \tilde{\lambda}_{\min }(|x|) \leq\left|d \exp _{x}(y)\right| \leq D \tilde{\lambda}_{\max }(|x|) \tag{0.1}
\end{equation*}
$$

In my new results I use the Jordan canonical form, together with identities involving analytic images of Jordan blocks, and a lower bound for the smallest singular value (paper by Y. P. Hong and C.-T. Pan) to generalize Theorem 1 to all non-zero $x \in \mathfrak{g}$ including when ad_{x} is not diagonalizable.

