Andrew Sarangan

Professor, electro-optics and electrical
Full-Time Faculty
School of Engineering: Department of Electrical and Computer Engineering

Selected Publications

  • Benson, Michael, Piyush Shah, Michael Marciniak, Andrew M. Sarangan, and Augustine Urbas. Forthcoming. Optical characterization of silver-nanorod thin films grown using oblique angle deposition. Journal of Nanomaterialshttp://www.hindawi.com/journals/jnm/aip/694982/
  • Shah, Piyush, Dongquan Ju, Xiaoxu Niu, and Andrew M. Sarangan. 2013. Vapor phase sensing using metal nanorod thin films grown by cryogenic oblique angle deposition. Journal of Sensors, Article ID 823041. http://dx.doi.org/10.1155/2013/823041
  • Fehrman Cory, Emily M., Roberto S. Aga, Jr., Jack P. Lombardi, III, Carrie M. Bartsch, Andrew Sarangan, and Emily M. Heckman. 2013. Nanoimprint lithography of deoxyribonucleic acid biopolymer films. J. Micro/Nanolith. MEMS MOEMS. 12, no. 4, 040501 (December 16). http://dx.doi.org/10.1117/1.JMM.12.4.040501
  • Derenko, Susan, René Kullock, Zhi Wu, Andrew Sarangan, Christiane Schuster, Lukas M. Eng, and Thomas Härtling. 2013. Local photochemical plasmon mode tuning in metal nanoparticle arrays, Optical Materials Express 3, no. 6: 794-805. http://dx.doi.org/10.1364/OME.3.000794
  • Shah, Piyush J., Zhi Wu, and Andrew M. Sarangan. 2013. Effects of CO2 critical point drying on nanostructured SiO2 thin films after liquid exposure. Thin Solid Films 527, 1 January 2013, Pages 344-348. http://dx.doi.org/10.1016/j.tsf.2012.10.057
  • Shah, Piyush J., Xiaoxu Niu, and Andrew M. Sarangan. 2012. High aspect ratio silver nanorod thin films grown at cryogenic substrate temperature J. Nanosci. Lett. 3: 19. http://www.simplex-academic-publishers.com/jnl.aspx?p=109637276
  • Gao, Jian, Andrew M. Sarangan, and Qiwen Zhan. 2012. Polarization multiplexed fluorescence enhancer using a pixelated one-dimensional photonic band gap structure. Opt. Lett. 37: 2640-2642. http://dx.doi.org/10.1364/OL.37.002640
  • Niu, Xiaoxu, Paul T. Murray, and Andrew Sarangan. 2012. Synthesis of Fe–Ni bimetallic nanoparticles from pixel target ablation: Plume dynamics and surface characterization. Journal of Nanoparticle Research 14, no. 8. http://dx.doi.org/10.1007/s11051-012-1017-z
  • Nehmetallah, G., R. Aylo, P. Powers, A. Sarangan, J. Gao, H. Li, A. Achari, and P. P. Banerjee. 2012. Co-sputtered SiC + Ag nanomixtures as visible wavelength negative index metamaterials. Opt. Express 20: 7095-7100. http://dx.doi.org/10.1364/OE.20.007095
  • Smith, R.C.G., A.M. Sarangan, Z. Jiang, J R. Marciante. 2012. Direct measurement of bend-induced mode deformation in large-mode-area fibers. Opt. Express 20: 4436-4443. http://dx.doi.org/10.1364/OE.20.004436
  • Gao, Jian, Andrew M. Sarangan, Qiwen Zhan. 2011. Experimental confirmation of strong fluorescence enhancement using one-dimensional GaP/SiO2 photonic band gap structure. Opt. Mater. Express 1: 1216-1223. http://dx.doi.org/10.1364/OME.1.001216
  • Gao, Jian, Qiwen Zhan, Andrew Sarangan. 2011. High-index low-loss gallium phosphide thin films fabricated by radio frequency magnetron sputtering. Thin Solid Films 519, no. 16: 5424-5428. http://dx.doi.org/10.1016/j.tsf.2011.02.068
  • Katte, Nkorni, Joseph W. Haus, Peter Powers, Andrew Sarangan, Jian Gao, and Michael Scalora. 2011. Third-order nonlinear optical properties of metallodielectric stacks. J. Opt. Soc. Am. B 28: 2277-2283. http://dx.doi.org/10.1364/JOSAB.28.002277
  • Sun, Lirong, and Andrew Sarangan. 2011. Fabrication of sloped sidewalls by inductively coupled plasma etching for silicon micro-optic structures. J. Micro/Nanolith. MEMS MOEMS 10, 023006 (April 29). http://dx.doi.org/10.1117/1.3574136
  • Cooney, Adam, Andrew Sarangan. 2010. Real-time modeling of quantum cascade laser operation using linear combinations of intrawell properties. Journal of Computational Electronics 9, no. 1: 8-15. http://dx.doi.org/10.1007/s10825-009-0290-2
  • Schmidt, D., B. Booso, T. Hofmann, E. Schubert, A. Sarangan, M. Schubert. 2009. Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films. Opt. Lett. 34: 992-994. http://dx.doi.org/10.1364/OL.34.000992
  • Schmidt, Daniel, Benjamin Booso, Tino Hofmann, Eva Schubert, Andrew Sarangan, Mathias Schubert. 2009. Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry. Applied Physics Letters 94, 011914. http://dx.doi.org/10.1063/1.3062996
  • Wu, Zhi, Peter E. Powers, Andrew M. Sarangan, Qiwen Zhan. 2008. Optical characterization of wiregrid micropolarizers designed for infrared imaging polarimetry, Opt. Lett. 33: 1653-1655. http://dx.doi.org/10.1364/OL.33.001653
  • Familia, Aziz Mahfoud, and Andrew Sarangan. 2008. Threshold gain analysis of second order distributed feedback lasers based on [2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene]. Optics Communications 281, no. 2: 310-318. http://dx.doi.org/10.1016/j.optcom.2007.09.022
  • Familia, Aziz M., Andrew Sarangan, Thomas R. Nelson. 2007. Gas to crystal effect on the spectral line narrowing of MEH-PPV. Opt. Express 15: 8231-8236. http://dx.doi.org/10.1364/OE.15.008231
  • Kim, Jang Pyo, and Andrew M. Sarangan. 2007. Temperature-dependent Sellmeier equation for the refractive index of AlxGa1−xAs, Opt. Lett. 32: 536-538. http://dx.doi.org/10.1364/OL.32.000536
  • Kim, Jang Pyo, and Andrew M. Sarangan. 2006. Design and simulation of resonant cavity enhanced corrugated quantum well infrared photodetectors. Appl. Opt. 45: 6065-6070. http://dx.doi.org/10.1364/AO.45.006065
  • Mahfoud, Aziz, Andrew Sarangan, Thomas R. Nelson, and Elmo A. Blubaugh. 2006. Role of aggregation in the photoluminescent and amplified spontaneous emission of [2- metroxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] in solution and films. Journal of Luminescence 118: 123-130. http://dx.doi.org/10.1016/j.jlumin.2005.08.012
  • Blickenstaff, Sarah B., Andrew M. Sarangan, Thomas R. Nelson, Kevin D. Leedy, and Donald L. Agresta. 2005. Influence of shadow mask design and deposition methods on nonplanar dielectric material deposition. J. Microlith., Microfab., Microsyst. 4, 023015 (April 22). http://dx.doi.org/10.1117/1.1897381
  • Familia, Aziz Mahfoud, Andrew Sarangan, and Thomas Nelson. 2005. Optically pumped photonic crystal polymer lasers based on [2-methoxy-5-(2'-ethylhexyloxy)- 1,4-phenylenevinylene]. Opt. Express 13: 3136-3143. http://dx.doi.org/10.1364/OPEX.13.003136
  • Kim, Jang Pyo, and Andrew Sarangan. 2004. Simulation of resonant cavity enhanced (RCE) photodetectors using the finite difference time domain (FDTD) method. Opt. Express 12: 4829-4834. http://dx.doi.org/10.1364/OPEX.12.004829
  • Sarangan, Andrew M., and Greg M. Peake. 2004. Enhancement of lateral mode discrimination in broad-area VCSELs using curved Bragg mirrors. Journal of Lightwave Technology 22, no.2 (February): 543- 549. http://dx.doi.org/10.1109/JLT.2004.824378

Selected Patents

Selected Honors and Awards

  • 2013 Faculty Excellence in Teaching Awards – Southwestern Ohio Council for Higher Education
  • 2013 Affiliate Societies Council Outstanding Scientists & Engineers Award – Research category, Dayton, OH
  • 2008 Sigma Xi Noland Award for Excellence in Research, University of Dayton

Courses Taught

  • Nano-Fabrication EOP632/ECE682
  • Integrated Optics EOP604/ECE674
  • Quantum Electronics EOP626/ECE676
  • Nano-Photonics EOP631
  • Optical Thin Films EOP595
  • Electro-Optic Devices and Systems EOP506/ECE573
  • Advanced Nanotechnology EGR411
  • Electrical Circuits EGR203

Degrees

  • Ph.D., Electrical and Computer Engineering, University of Waterloo, Canada, 1997
  • M.A.Sc., Electrical and Computer Engineering, University of Waterloo, Canada, 1994
  • B.A.Sc., Electrical and Computer Engineering, University of Waterloo, Canada, 1991

Professional Activities

  • Registered Professional Engineer in the state of Ohio
  • Senior Member, IEEE
  • Member of OSA, SPIE, ASEE
  • Technical program committee of IEEE Photonics Society: Photodetectors, Sensors, Systems and Imaging

Research Interests

  • Micro and nano-fabrication
  • Optical thin film design and fabrication
  • Photodetectors and imaging devices
  • Semiconductor lasers
  • Computational electromagnetics